

IMPORTANT MCQ'S FOR SECTION A

IX MATHEMATICS

1 A number i	n the form of a+ ; b is called	l number.	
a Real	b. Complex	c Imaginary	d. Whole
$2 \frac{1}{4} = 0.25$ is	s the decimal	fraction.	
a. Termi	nating	b. Non ter	minating
c Non to	erminating recurring	d Non te	erminating nonrecurring
3 The multip	licative inverse of $\sqrt{5}$ is		
a- √5	b $\frac{1}{\sqrt{5}}$	c. 5	d $\frac{1}{\sqrt{5}}$
4 The conjug	ate of -3 + 5; is		
a -3; +3 5 In y then	b 3 + 5; n y is called	c 3 -5;	d. None of these
√x a Index 6 π is consid	b Radicand	c Surd r.	d power
a. Whole	e number b. Rational nu	mber c Irrational num	ber d real number
7 The produc	et of the two complex numbe	er (a, b) and (c, d) is	
a(a+c, a+c)	(c+d) $b(a-c, c-d)$	c (ac - bd , ad + bc	$d\left(\frac{1}{c^{2}+d^{2}},\frac{bc-ad}{c^{2}+d^{2}}\right)$

8 In 2; (3 - ;) the real part is					
a. 2 - 6;	b 2+6;	c. $-2+6;$	d. – 2 - 6;		
$9\sqrt{-2} \times \sqrt{-2} =$					
a - 2	b. 2	c2	d. 2;		
10 The union of rational a	nd irrational number	rs is called			
a Real number	b Whole number	c. Rational number	d. Natural number		
11. The logarithm is inven	ted by				
a Mussa Al Khwarzii	ni b Al Beroni	c Yaquoob Al Khudi	d Ibnul Hasan		
1 2 Logarithm to the base 1	0 is called				
a Common logarithm	b Natural loga	rithm c Anti logarithn	n d None of these		
13 Log (m n) =	-				
- a Log m ⁿ	b log m- log n	c log m + log n	$\frac{n}{m}$		
14 The exponential form of	of $\log_a y = x$ is		-		
$\mathbf{a.} \mathbf{a}^{\mathbf{x}} = \mathbf{y}$	$\mathbf{b} \mathbf{x}^{\mathbf{y}} = \mathbf{a}$	$\mathbf{c} \mathbf{a}^{\mathbf{x}} = \mathbf{y}$	$\mathbf{d.} \mathbf{y}^{\mathbf{x}} = \mathbf{a}$		
15 The Integral part of the	e logarithm is called -				
a. Characteristics	b. Mantissa	c Exponent	d. Base		
16 If $\log_{10} x = 4$ then $x = -$					
a. 500	b 100	c.1000	d.10000		
17 If log 3.0 = 0.4471 then number of digits in 3 ¹⁹ are					
a. 4	b 6	<i>c</i> 8	d 10		
$18 \ 3 \log 2 - 2 \log 3 = \dots$					
a .Log 2 – log 3	b log (<u>9</u>)	$c \log(\frac{8}{2})$	d. log 6		
	8	9			

19 $3^5 = 243$ can be written in logarithm form as ---- $b \ log \ _3 \ 243 = 5$ $c \ log \ _5 \ 243 = 3$ $d. \ log \ _5 \ 3 = 243$ a $log_{3} 5 = 243$ 20 The characteristics of 54.58 is -----a 0 b 1 с3 d 3 21 Every poly nominal is -----a. An irrational expression b. a rational expression c. Sentence d. None of these **22**If x = 1 and y = 1 then value of x - y + x y is -----**b** 1 a. 0 c -1 **d.**2 **2** The polynomial having two terms is called -----a. Monomial **b** Binomial. c. Trinomial d. Multinomial b $\frac{2}{3}$ a. 2 d 4 c. 1 **25** $(a + b)^3 = a^3 + b^3 + \dots$ a. 3ab(a+b)**b** 3ab (a - b) c - 3ab(a + b) d. - 3ab(a - b)**26** ⁷√128 = ----b $4\sqrt{2}$ a. $2\sqrt{2}$ 2 d 4 С 27 _____ *is a* ------ Expression $x^{2}+2$ a. Polynomial **b** Rational c Irrational d surd 28 An algebraic expression which can be written as in the form of p(x)is called -----

a. Polynomial expression b. Rational expression c. Irrational expression d. Surd

EXAMINATION BOARD				
29 The degree of x^2	$^{2}y^{2}z^{2} + 3$ is			
a 1 30 3xy ⁻² is	b 2 expression	с. б	d. 8	
a. Polynomial I	o.Rational c.Irrational d	l Surd		
31 There are	methods to find out the H	.C.F		
a. One	b Two	c Three d None of	these	
${f 2}$ The H. C F of 4 x^5y	2 and 12 x^3y^4 is			
a. 4 <i>x</i> ³ <i>y</i> ²	b 48 x^5y^2	c $2x^5y^4$ d $64x^5y^4$	2	
33 The square root of	a^2 -2ab + b^2 is			
a ($a + b$) ²	b. (a+b)	c. $(a - b)^2$ d. (a	– b)	
34 L.M.C × H.C.F of the	two polynomials =			
a Produ	ct of two polynomial	b. Division of j	polynomial	
c Subtraction of two polynomials d . Addition of two polynomials				
35 L . C . M of $(2y + 3z)^5$ and $(2y + 3z)^3$ is				
±s∟.し.ⅣIOT(21/4	$(2y + 3z)^{5}$ and $(2y + 3z)^{3}$ is			
a. (2y+3z)	- $3z$) ⁵ and ($2y + 3z$) ³ is b. ($2y + 3z$) ³	c. $(2y + 3z)^2$	d. $(2y+3z)^5$	
35 L . C . IVI OF $(2y + 3z)$ a. $(2y + 3z)$ 36 The H.C.F of $x^3 - 3$	$(2y + 3z)^{5}$ and $(2y + 3z)^{3}$ is b. $(2y + 3z)^{3}$ y^{3} and $x^{2} - y^{2}$ is =	c. $(2y + 3z)^2$	d. $(2y + 3z)^5$	
35 L. C. M OF $(2y + 3z)$ a. $(2y + 3z)$ 36 The H.C.F of $x^3 - 3$ a. $x^2 - y^2$	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$	c. (2y + 3z) ²	d. $(2y + 3z)^5$ d. x + y	
35 L. C. M OF $(2y + 3z)$ 36 The H.C.F of $x^3 - 3x^2 - y^2$ 37 L. C. M of 9 x^2	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is	с. (2y+3z) ² 	d. $(2y + 3z)^5$ d. x + y	
a. (2y + 3z) 36 The H.C.F of x^3 – a. $x^2 - y^2$ 37 L. C. M of 9 x^2 a. 24 x^2	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is b 45 x^2	c. $(2y + 3z)^2$ c. x - y c 135 x^3	d. $(2y + 3z)^5$ d. x + y d. 135 x^2	
a . (2y + 3z) 36 The H.C.F of x^3 – a . $x^2 - y^2$ 37 L. C. M of 9 x^2 a . 24 x^2 38 HCF of 45 and 90	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is b 45 x^2	c. $(2y + 3z)^2$ c. x - y c 135 x^3	 d. (2y + 3z)⁵ d. x + y d. 135 x² 	
a . $(2y + 3z)$ a . $(2y + 3z)$ 36 The H.C.F of $x^3 - 3x^2 - y^2$ 37 L. C. M of 9 x^2 a . $24 x^2$ 38 HCF of 45 and 90 a . 5	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is b 45 x^2) is b. 15	c. $(2y + 3z)^2$ c. x - y c 135 x^3 c 45	 d. (2y + 3z)⁵ d. x + y d. 135 x² d. 90 	
a . (2y + 3z) 36 The H.C.F of x^3 – a . $x^2 - y^2$ 37 L. C. M of 9 x^2 a . 24 x^2 38 HCF of 45 and 90 a . 5 39 The square root o	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is b 45 x^2) is b. 15 f $49x^2 + 126$ xy + $81y^2$ is	c. $(2y + 3z)^2$ c. x - y c 135 x^3 c 45	 d. (2y + 3z)⁵ d. x + y d. 135 x² d. 90 	
a. $(2y + 3z)$ a. $(2y + 3z)$ 36 The H.C.F of $x^3 - a$ a. $x^2 - y^2$ 37 L. C. M of 9 x^2 a. 24 x^2 38 HCF of 45 and 90 a. 5 39 The square root of a. $(7x - 9y)$	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is b 45 x^2) is b. 15 f $49x^2 + 126 xy + 81y^2$ is b $(7x + 9y)$	c. $(2y + 3z)^2$ c. $x - y$ c $135 x^3$ c 45 c $(7x - 9y)^2$ d	d. $(2y + 3z)^5$ d. $x + y$ d. $135 x^2$ d. 90	
a . $(2y + 3z)$ a . $(2y + 3z)$ 36 The H.C.F of $x^3 - a$. $x^2 - y^2$ 37 L. C. M of 9 x^2 a . 24 x^2 38 HCF of 45 and 90 a . 5 39 The square root of a . $(7x - 9y)$ 10 In equation 22	- $3z$) ⁵ and $(2y + 3z)^3$ is b. $(2y + 3z)^3$ y^3 and $x^2 - y^2$ is = b. $x^2 + y^2$ and 15 x is b 45 x^2) is b. 15 f $49x^2 + 126 xy + 81y^2$ is b $(7x + 9y)$ x+ y = 6 if x- coordinate is 1 f	c. $(2y + 3z)^2$ c. $x - y$ c $135 x^3$ c 45 c $(7x - 9y)^2$ d then y- coordinate will be	d. $(2y + 3z)^5$ d. $x + y$ d. $135 x^2$ d. 90	

40 If a is any real number then order pair (a, 0) lies in / on ------

42 In order pair (a , b), where b is called		
a. x-coordinate	b. y- coordinate	c. xy coordinate	d None of these
43 The equation $2x - y$	y = 7 with respect to its deg	gree is called equation	0 n
a. Linear	b. Quadratic	c. Rational	d. Irrational
44 Co-ordinate axes are	mutually		
a Perpendicular	b. Intersecting at 45°	c Intersecting at 30°	d. Parallel
45 The order pair (0,	4) lies in / on		
a. 1 st quadrant	b 2nd quadrant	c. x- axis	d. y- axis
46 If (x + 3) (x – 2) = 0 th	en solution set is		
a { 3 , -2 }	b. { -3 , 2 }	c { -3, -2 }	d{3,2}
47 The equation Involvin	g radical expression of va	vriables are called	equation
a Linear	b. Radical equation	c Quadratic.	d. Rational
48An equation in the form	of $2x^4 - 3x^3 + 7x^2 - 3x - 2$	is called eq	uation.
a Reciprocal	b Radical	c. Exponential	d. None of these
49 The quadratic form	$\mathbf{nula for } \mathbf{a} \mathbf{x}^2 + \mathbf{b} \mathbf{x} + \mathbf{c} = 0 - \mathbf{c}$		
a $\frac{-b-\sqrt{b^2-4ac}}{b^2-4ac}$	b $b^{-b \pm \sqrt{b^2 - 4ac}}$	$b^{-b}\pm \sqrt{b^2+4ac}$	d $b \pm \sqrt{b^2 - 4ac}$
2 <i>a</i>	<u>2a</u>	2a	<u>2a</u>

50. In the quadratic equation the highest exponent of variable is -----a 1 b 2 c 3 d.4

51 The statements which are accepted without proof are called-----**b** Fundamental agreement d Postulates a. Axioms c Ply fair axiom **2** How many acute angles are there ------ in an acute angled triangle? b Two c. Three a. One d. Not more then 2 53 If two adjacent angles are equal in measure then their common arm is called------of angle. b. Exterior c. Vertical d. Interior a. Bisector 54 A quadrilateral having one pair of opposite side is parallel is called -----a. Trapezoid **b** Parallelogram c. Rhombus d. Square **5** An angle measure less than 90 ° is called ------ angle a. Acute **b** Obtuse c Right d Reflex **5** The triangle having all three sides are congruent is called -----a. Isosceles **b.** Scalene c. Equilateral d Obtuse 57 The complementary angle of 80° is -----b 20° c 90° a. 10° d.100° **B** A triangle having two sides are congruent is called -----a. Scalene **b.** Isosceles c Equilateral d. Right angle **9** The points that lie on the same straight line are called -----a. Collinear **b** Non collinear c. Co incident d. None of these 60 If the two supplementary angles are equal in measure then each is called -----**b** Obtuse a. Acute c. Complementary d Right 61 If two opposite sides are congruent and parallel, it is a -----a Square **b** Parallelogram. c. Rhombus d. Quadrilateral **2** The diagonal of square are -----to each other. a. Perpendicular **b** Congruent c Non congruent d. Both a and c 63 If the sum of the measure of < a and < c of a parallelogram ABCD is 130° then m< B =----

100	Zas	ZIAUDDI	NUNIVE	RSITY
Xama	WATION BORD	EXAMIN	AIION B	OARD
64 In a	an parallelogran	n opposite sides are		
a.	Congruent	b Equidistance	c Parallel	d Perpendicular
6 The	e diagonal of the	e parallelogram divide in to-	congruent triang	le.
a.	2	b 3	c 4	d None of these
66 Th	e line which joiı	n the vertex and passes perp	endicularly to the opposi	te side is called
a.	Altitude	b Diameter	c Median	d. None of these
67 The	e medians of the	e triangle are		
a.	Parallel	b congruent	c. Bisect	d. None of these
68 In a	any parallelogra	m Corresponding angles ar	e	
a.	Equal	b. Parallel	c. Right	d. None of these
Ø In a	a parallelogram	the diagonal eac	h other.	
a 70 Th a. 71 Th	Divide e line segment j Orthocenter e line segment v	b. Bisect oining vertex of a triangle to b Median vhich divides the line segme	c. Perpendicular the midpoint of opposite c Altitude nt into two equal parts is	d. None of these side is called d. Hypogenous called
a.	Bisector of line	e b. Congruent of line	c Right bisector of lin	ne d None of these
Z A line which divides the angle into two equal angles is called				
a.	Bisector	b Angle bisector	c. Perpendicular line	d. Parallel line
73 The	ere are	-acute angles in an acute an	gled triangle.	
a.	One	b Two	c. Three	d. None of these
74 Right bisector cuts the line segment into two equal parts at				
a.	45°	b 90°	c 180°	d. 360°
75 Th	e line joining th	e vertex and passes perpend	licularly to the opposite s	ide of triangle
isca	lled			
Μ	edian	b Altitude	c. Radius	d. None of these
76]	If the perpendic	ular distance between the tv	vo line is the same , then t	he lines are
to ea	ach other.			
	a. Perpendicu	ılar to each other	b Parallel	to each other
	c Intersectin	ng to each other	d None of	these
77 A line perpendicular from a vertex of a triangle to its opposite side is called				
	a Median	b Perpendicular bisect	or c. Angle bisector	d. Altitude

78 The area of the-----is equal to the product of base and height.

	a Square	b Parallelogram	c Rectangle	d. Rhombus	
79	79 Triangle on the same base and of same altitude are equal in				
	a Area	b Perimeter	c. Length	d. All of these	
80	80 If the two parallelograms of equal areas have equal bases their altitudes are				

a.Equal b. not equal c. half d. None of these

